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LETT'ER TO THE EDITOR 

Finite-size corrections for the low lying states of a half-filled 
Hubbard chain 

F Woynarovicht and H-P Eckle 
Fachbereich Physik, WE 5, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 33, West 
Germany 

Received 2 February 1987 

Abstract. The finite-size corrections to the ground state and the energy of the low magnetisa- 
tion (SK N )  states as a function of the size N are calculated analytically for the one- 
dimensional half-filled Hubbard model with on-site repulsion (U > 0). It is found that the 
contribution of the charge degrees of freedom is negligible, while the contribution of the 
spin degrees is the same as  that in the one-dimensional isotropic Heisenberg model. The 
analytical results are compared to numerical ones obtained for the chain lengths up to 
N = 512. 

As is well known, several strictly one-dimensional quantum systems are in critical 
phases at zero temperature. These systems-similarly to those higher-dimensional ones 
which exhibit real phase transitions at finite temperatures-are believed to form 
universality classes. Within these classes the microscopic details do  not play an 
important role, and the critical exponents are common. Due to recent developments 
in studying conformal invariance (Cardy 1984, 1986a, b, Blote et a1 1986, Affleck 
1986)-a symmetry widely accepted to be present in critical systems-it is known that 
the dependence of the ground-state energy and low lying part of the spectrum on the 
size of these systems is also universal: 

Eo = AL - I T C / ~  L E,  - Eo = ~ T X , /  L (1) 

where the E, are the energy eigenvalues, x,, are the scaling dimensions of the scaling 
operators and L is the size of the system. The conformal anomaly number c classifies 
the system. Systems for which c and x, coincide are expected to show identical critical 
behaviour. 

In the present letter we report on analytical and numerical studies on the one- 
dimensional half-filled Hubbard model with on-site repulsion, which is known to be 
critical. We have calculated analytically the finite-size corrections to the ground-state 
energy and the size dependence of the mass gap. We have found that both quantities 
follow the rule (1) with c = 1 and xs = S2/2, just as the one-dimensional isotropic 
Heisenberg chain does (Avdeev and Dorfel 1986, Hamer 1985, 1986, Woynarovich 
and Eckle 1987). It is also found that the next corrections are also the same in the 
two models. The one-dimensional Hubbard model exhibits two kinds of excitations, 
one connected with the charge, the other with the spin degrees of freedom (Woynarovich 
1982a, b, 1983). The latter ones are gapless, and in the infinite repulsion limit they 
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coincide with the excitations of the isotropic antiferromagnetic Heisenberg chain. Thus 
the critical behaviour should coincide in that limit. Since c = 1 would allow for a 
coupling dependence of the critical behaviour (as in the anisotropic Heisenberg model) 
it is remarkable that the spin part of the Hubbard model shows the same critical 
behaviour as the isotropic -Heisenberg model for all non-zero values of 
repulsion. 

The one-dimensional Hubbard model described by the Hamiltonian 
N N 

H - c c ( C:+IuCio + HC) -k- U c C : ~ C l ~ C ~ ~ C , ~  N+1=1  
i = l  U 1 = I  

the on-site 

(2) 

(where c,, are electron creation and destruction operators) can be diagonalised by 
solving the set of equations (Lieb and Wu 1968) 

M sin k, -A, 

u14 
Nk, = 2n-4 - 2 tan-' 

N e  A, -sin k, - 1 2 tan-' 

, = I  

A, -A, - 2 r J ,  + 1 2 tan-' -. 
M 

u/4 , = 1  U1 2 j=l 

(3) 

(4) 

Here k, are the momenta of the electrons and Aa are connected with the spin distribution. 
I ,  and J,  are the actual quantum numbers. The magnetisation and the energy per site 
of the Ne electrons described by a solution of (3) and (4) are given by 

s = ~ N , - M  ( 5 )  

1 Ne 
E = -- 2 COS k,. 

N j = l  

In order to obtain the lowest energy state of the half-filled band (Ne = N( = even)) 
with a given magnetisation one has to choose the 4 and J,  sets as 

( N I 2  - S = even) 
4 + ' = r , + l  I, = - N / 2 + { :  j = 1 , 2 ,  . . . ,  N (7) 

( N /  2 - S = odd) 

J,  + I = J, + 1 

The ground and first excited states are characterised by (7) and (8) with S=O and 
S = 1,  respectively. 

In calculating the finite-size effects we closely follow the method given by de Vega 
and Woynarovich (1985) and further developed by Woynarovich and Eckle (1987). 
We introduce the functions 

JI = -[ N / 2 - ( S + 1 ) ]/ 2 cz = 1 , 2 , .  . . , N / 2 - S .  (8) 

With these definitions (3) and (4) take the form 
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and a straightforward manipulation leads to the energy per site 

E = & ,  (O)- J‘ E J / ~ ) R ( ~ ) - J ~  E ~ ( A ) s ( A ) .  
-7 -02 

Here €2) is the ground-state energy per site for an infinite system 

L445 

(13) 

and ~ , ( k )  and €,(A) are the same as the excitation energies connected with the charge 
and spin excitations (holes in the k and A distributions, respectively) (Woynarovich 
1983): 

(15) 
exp(-wU/2) dw 

cos( w sin k) - 
0 

& , ( k )  = 2 cos k + 4  

OD J , ( w )  COS wh dw J cosh(wU/4) w * 

- &,(A) = 2 

The R ( k )  and S(A) are shorthand notations for 

while & ( U )  and J l ( w )  are Bessel functions. 
We note that, similarly to the excitation energies, the finite-size corrections to the 

ground state also split up into two contributions, one coming from the charge, the 
other from the spin degrees of freedom. Now we show that for a state characterised 
by an J j  set given by (7) the charge contribution is negligible in the sense that as N + 00 

it disappears faster than any power of 1 /  N. For this we use the formula 

Here A,,, are f and N independent constants and A,(f; N)  depends on both f and 
N, but if the (2p + 1)th derivative o f f  is finite then it has an N-independent upper 
bound. I f f  is a smooth periodic function with a period 1, all the terms on the RHS 
are zero except the last one. Since p can be any large value, the LHS disappears faster 
than any power of 1 /  N as N + m. 

Changing the variables in the contribution of the charge part from k to w ( k j  to 
Jj/ N)  transforms this contribution into the form of the LHS of (18), with f = ~ , ( k (  w)), 
which is, for any U > 0, a smooth periodic function with a period of 1 .  Thus according 
to the above paragraph this contribution is negligible. This is not a surprising result: 
the charge excitation spectrum possesses a gap, so its contribution is expected to be 
exponentially small (de Vega and Woynarovich 1985). 

According to the previous paragraph, the contribution of R (  k )  can be neglected. 
Moreover, also in ( l o ) ,  we may replace (1/ N) Zj  by dkpN (k )  without introducing 
a significant error. The remaining equation 

( a N ( h ) + S ( A ) )  dA) 
( U/2)2+(A -A’)2 
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is extremely similar to the analogous equation of the isotropic Heisenberg model. 
Actually it can be treated in the same way (Woynarovich and Eckle 1987). Using the 
formula 

max g”’ 

to calculate the contributions of S(A), denoting the largest A,(A N , 2 - S )  by A, introducing 
the functions 

and using Fourier transforms, (19), (12) and (13) can be transformed into the set of 
equations 

exp(iwA)J,,(w) 
1 1 -_ - 

2 r  2 cosh(wU/4) 

iw + -+ 
(2; 12N2a(A) 1 +exp(-/wl U / 2 )  

~“s’-&:)= 1 6 r  exp(-2rA/U)I ,  

with Jo(w) and I l ( x )  being Bessel functions. Solving (22) by the method given by 
Yang and Yang (1966) (23)-(25) can be calculated giving 

Since the dispersion of the spin excitations is given by (Woynarovich 1983) 

Jo(w) sin(wA) 
w cosh(wU/4) 

d o  (-exp(-2rA/ U)10(2r/  U )  for A >> 1) 

(28) J,(w)cos(wA) dw 
(-4 exp(-2rA/ U)II(27r/ U )  for A >> 1) - I 0 wcosh(wU/4) w 

&,(A)  = 2 
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after properly normalising the Hamiltonian (von Gehlen er a1 1986) (i.e. to have instead 
of (28) the simple relation ~ , ( h ) = p , ( A )  for small momenta) and returning from the 
energy per site to the energy, (26) and (27) yield (1) with the same c and xs as the 
isotropic Heisenberg model, i.e. with c = 1 and x, = S2/2. Moreover, the powers and 
the coefficients of the first logarithmic corrections are also the same in the two models: 

Based on the above results one may expect the half-filled Hubbard model to exhibit 
the same critical behaviour as the isotropic Heisenberg model. We have to stress, 
however, that this analogy holds only for U > 0 for two reasons. One is that in the 
U+O limit the corrections due to the charge degrees of freedom grow up: for small 
U the derivatives of E,( k( w ) )  grow up, and in the U = 0 limit E,( k( w ) )  is not a smooth 
(although it is still a periodic) function, and the argument presented just after (18) 
does not hold. Actually, in this limit the contribution of the charge degrees of freedom 
is just as large as that of the spins. The other reason is that the spin part of the 
corrections itself cannot be continued down to U = 0 due to the essential singularity 
of the model at this point. In our calculation A >> 1 has been supposed, but for U = 0 
for all A a ,  and so for A too, [ A I  < 1. Actually, at the point U = 0 one can solve the 
equations which describe the spin contribution only (equations (31) and (32)) exactly, 
and one finds that the result for the correction to the ground state does not coincide 
with (26). 

We also carried out numerical calculations for the finite-size corrections. We have 
solved numerically by iteration for N = 8,16,32,. . . ,512 and several U values that 
form of (4) in which the Xi is replaced by the N (pN(k) ,  i.e. 

A, -A, Aa -sin k M 

L{T 2tan-* dk=2.rrJa+ 2tan-’-. 
21T --?r u / 4  p=1 u / 2  

For the energy per site we used the expression 

4 
N a  

E = - [IT 2 COS kpN (k)  dk = -- {[ ( U/4)2 + COS’(X,/~)]’’’ - U/4} 

xa = 2 sin-‘ 
(32) 

[(U/4)2+(A,+1)2]1’2-[(U/4)2+(A -1)2]1’2 
2 

and for E E )  we used (14). 
Note that (31) and (32) do not contain the finite-size corrections due to the charge 

degrees of freedom. Our findings are plotted in figures 1 and 2. Both the correction 
to the ground state and the mass gap are normalised to their values for N + m .  The 
individual curves are labelled by the value of U and indicates the Heisenberg limit. 
On the both sets of curves one can observe the tendency that, for fixed but large enough 
N with decreasing U, the points approach the N + m  values. This is due to the fact 
that in the argument of the logarithm N enters together with Z0(2.rr/ U )  which increases 
with decreasing U. It is striking, however, that for small U and not large enough N 
the corrections to the ground-state energy are very far away from their N + 00 values. 
This is due to the power law type corrections (indicated in (25) but not in (26)). The 
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Figure 1. Corrections to the ground-state energy normalised 
plotted against 1/ N. The individual curves are labelled by the 

terms yielding power type corrections are in general of the form 

1 exp{-[(2n + 1 ) 2 ~ A ] /  U} 

to -1 in the N-*m limit 
value of U. 

x [Zo( (2m y)2T) exp{-[(2m + 1 ) 2 ~ A ] /  U} . 1 
Since 

exp(-21rA/ U)/ZO(2r/ U) - N 

for small U the terms of (33) take the form 

(2n + 1)2T (2m + 1)2T [ z, ( ) Io( ) {[Z0(2n/ u)l""'")+7-'] 

(33)  

(34) 

i.e. their significance is enhanced when U is small. Nevertheless they decay faster 
than the logarithmic terms. The form (35) is an indication that our calculation breaks 
down in the U + 0 limit, as discussed earlier. 
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